Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 348, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582836

RESUMO

BACKGROUND: Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS: Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION: Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.


Assuntos
Anopheles , Inseticidas , Malária , Nitrilas , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Benin , Organofosfatos/farmacologia , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas/genética , Perfilação da Expressão Gênica
2.
PLoS Comput Biol ; 19(6): e1011163, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327214

RESUMO

BACKGROUND: Microbiome research is providing important new insights into the metabolic interactions of complex microbial ecosystems involved in fields as diverse as the pathogenesis of human diseases, agriculture and climate change. Poor correlations typically observed between RNA and protein expression datasets make it hard to accurately infer microbial protein synthesis from metagenomic data. Additionally, mass spectrometry-based metaproteomic analyses typically rely on focused search sequence databases based on prior knowledge for protein identification that may not represent all the proteins present in a set of samples. Metagenomic 16S rRNA sequencing only targets the bacterial component, while whole genome sequencing is at best an indirect measure of expressed proteomes. Here we describe a novel approach, MetaNovo, that combines existing open-source software tools to perform scalable de novo sequence tag matching with a novel algorithm for probabilistic optimization of the entire UniProt knowledgebase to create tailored sequence databases for target-decoy searches directly at the proteome level, enabling metaproteomic analyses without prior expectation of sample composition or metagenomic data generation and compatible with standard downstream analysis pipelines. RESULTS: We compared MetaNovo to published results from the MetaPro-IQ pipeline on 8 human mucosal-luminal interface samples, with comparable numbers of peptide and protein identifications, many shared peptide sequences and a similar bacterial taxonomic distribution compared to that found using a matched metagenome sequence database-but simultaneously identified many more non-bacterial peptides than the previous approaches. MetaNovo was also benchmarked on samples of known microbial composition against matched metagenomic and whole genomic sequence database workflows, yielding many more MS/MS identifications for the expected taxa, with improved taxonomic representation, while also highlighting previously described genome sequencing quality concerns for one of the organisms, and identifying an experimental sample contaminant without prior expectation. CONCLUSIONS: By estimating taxonomic and peptide level information directly on microbiome samples from tandem mass spectrometry data, MetaNovo enables the simultaneous identification of peptides from all domains of life in metaproteome samples, bypassing the need for curated sequence databases to search. We show that the MetaNovo approach to mass spectrometry metaproteomics is more accurate than current gold standard approaches of tailored or matched genomic sequence database searches, can identify sample contaminants without prior expectation and yields insights into previously unidentified metaproteomic signals, building on the potential for complex mass spectrometry metaproteomic data to speak for itself.


Assuntos
Microbiota , Espectrometria de Massas em Tandem , Humanos , RNA Ribossômico 16S/genética , Bases de Dados de Proteínas , Peptídeos/genética , Peptídeos/análise , Microbiota/genética , Bactérias/genética , Proteoma/genética
3.
Circ Genom Precis Med ; 16(1): e003641, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36548480

RESUMO

BACKGROUND: The genetics of rheumatic heart disease (RHDGen) Network was developed to assist the discovery and validation of genetic variations and biomarkers of risk for rheumatic heart disease (RHD) in continental Africans, as a part of the global fight to control and eradicate rheumatic fever/RHD. Thus, we describe the rationale and design of the RHDGen study, comprising participants from 8 African countries. METHODS: RHDGen screened potential participants using echocardiography, thereafter enrolling RHD cases and ethnically-matched controls for whom case characteristics were documented. Biological samples were collected for conducting genetic analyses, including a discovery case-control genome-wide association study (GWAS) and a replication trio family study. Additional biological samples were also collected, and processed, for the measurement of biomarker analytes and the biomarker analyses are underway. RESULTS: Participants were enrolled into RHDGen between December 2012 and March 2018. For GWAS, 2548 RHD cases and 2261 controls (3301 women [69%]; mean age [SD], 37 [16.3] years) were available. RHD cases were predominantly Black (66%), Admixed (24%), and other ethnicities (10%). Among RHD cases, 34% were asymptomatic, 26% had prior valve surgery, and 23% had atrial fibrillation. The trio family replication arm included 116 RHD trio probands and 232 parents. CONCLUSIONS: RHDGen presents a rare opportunity to identify relevant patterns of genetic factors and biomarkers in Africans that may be associated with differential RHD risk. Furthermore, the RHDGen Network provides a platform for further work on fully elucidating the causes and mechanisms associated with RHD susceptibility and development.


Assuntos
Fibrilação Atrial , Febre Reumática , Cardiopatia Reumática , Humanos , Feminino , Adolescente , Cardiopatia Reumática/genética , Estudo de Associação Genômica Ampla , Ecocardiografia
4.
In Vitro Cell Dev Biol Anim ; 58(8): 679-692, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35947290

RESUMO

Amphibians have regenerative capacity and are resistant to developing cancer. This suggests that the developing blastema, located at the tissue regeneration site, may secrete anti-cancer factors. Here, we investigate the anti-cancer potential of tadpole tail blastema extracts (TAD) from the stream frog, Strongylopus grayii, in embryonal rhabdomyosarcoma (ERMS) cells. ERMS originates in skeletal muscle tissue and is a common pediatric soft tissue sarcoma. We show using MTT assays that TAD inhibited ERMS cell viability in a concentration-dependent manner, and phase contrast/fluorescent microscopy revealed that it induced morphological markers of senescence and apoptosis. Western blotting showed that this was associated with DNA damage (γH2AX) and activation of the p38/MAPK stress signaling pathway as well as molecular markers of senescence (p16INK4a), apoptosis (cleaved PARP), and inhibition of cell cycle promoters (cyclin A, CDK2, and cyclin B1). Furthermore, proteomics followed by gene ontology analyses showed that TAD treatment inhibited known tumor promoters and proteins required for cancer cell survival. Lastly, using the LINCS drug perturbation library, we show that there is an overlap between the proteomics signature induced by TAD and common anti-cancer drugs. Taken together, this study provides novel evidence that TAD exhibits cytotoxicity in ERMS cells.


Assuntos
Antineoplásicos , Rabdomiossarcoma Embrionário , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinógenos , Linhagem Celular Tumoral , Ciclina A , Ciclina B1 , Inibidor p16 de Quinase Dependente de Ciclina , Larva , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Rabdomiossarcoma Embrionário/tratamento farmacológico , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/patologia
5.
Microbiome ; 9(1): 241, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911583

RESUMO

BACKGROUND: The role of the human microbiome in health and disease is an emerging and important area of research; however, there is a concern that African populations are under-represented in human microbiome studies. We, therefore, conducted a systematic survey of African human microbiome studies to provide an overview and identify research gaps. Our secondary objectives were: (i) to determine the number of peer-reviewed publications; (ii) to identify the extent to which the researches focused on diseases identified by the World Health Organization [WHO] State of Health in the African Region Report as being the leading causes of morbidity and mortality in 2018; (iii) to describe the extent and pattern of collaborations between researchers in Africa and the rest of the world; and (iv) to identify leadership and funders of the studies. METHODOLOGY: We systematically searched Medline via PubMed, Scopus, CINAHL, Academic Search Premier, Africa-Wide Information through EBSCOhost, and Web of Science from inception through to 1st April 2020. We included studies that characterized samples from African populations using next-generation sequencing approaches. Two reviewers independently conducted the literature search, title and abstract, and full-text screening, as well as data extraction. RESULTS: We included 168 studies out of 5515 records retrieved. Most studies were published in PLoS One (13%; 22/168), and samples were collected from 33 of the 54 African countries. The country where most studies were conducted was South Africa (27/168), followed by Kenya (23/168) and Uganda (18/168). 26.8% (45/168) focused on diseases of significant public health concern in Africa. Collaboration between scientists from the United States of America and Africa was most common (96/168). The first and/or last authors of 79.8% of studies were not affiliated with institutions in Africa. Major funders were the United States of America National Institutes of Health (45.2%; 76/168), Bill and Melinda Gates Foundation (17.8%; 30/168), and the European Union (11.9%; 20/168). CONCLUSIONS: There are significant gaps in microbiome research in Africa, especially those focusing on diseases of public health importance. There is a need for local leadership, capacity building, intra-continental collaboration, and national government investment in microbiome research within Africa. Video Abstract.


Assuntos
Microbiota , Humanos , Programas de Rastreamento , Saúde Pública , África do Sul , Uganda
6.
JAMA Cardiol ; 6(9): 1000-1011, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34106200

RESUMO

Importance: Rheumatic heart disease (RHD), a sequela of rheumatic fever characterized by permanent heart valve damage, is the leading cause of cardiac surgery in Africa. However, its pathophysiologic characteristics and genetics are poorly understood. Understanding genetic susceptibility may aid in prevention, control, and interventions to eliminate RHD. Objective: To identify common genetic loci associated with RHD susceptibility in Black African individuals. Design, Setting, and Participants: This multicenter case-control genome-wide association study (GWAS), the Genetics of Rheumatic Heart Disease, examined more than 7 million genotyped and imputed single-nucleotide variations. The 4809 GWAS participants and 116 independent trio families were enrolled from 8 African countries between December 31, 2012, and March 31, 2018. All GWAS participants and trio probands were screened by use of echocardiography. Data analyses took place from May 15, 2017, until March 14, 2021. Main Outcomes and Measures: Genetic associations with RHD. Results: This study included 4809 African participants (2548 RHD cases and 2261 controls; 3301 women [69%]; mean [SD] age, 36.5 [16.3] years). The GWAS identified a single RHD risk locus, 11q24.1 (rs1219406 [odds ratio, 1.65; 95% CI, 1.48-1.82; P = 4.36 × 10-8]), which reached genome-wide significance in Black African individuals. Our meta-analysis of Black (n = 3179) and admixed (n = 1055) African individuals revealed several suggestive loci. The study also replicated a previously reported association in Pacific Islander individuals (rs11846409) at the immunoglobulin heavy chain locus, in the meta-analysis of Black and admixed African individuals (odds ratio, 1.16; 95% CI, 1.06-1.27; P = 1.19 × 10-3). The HLA (rs9272622) associations reported in Aboriginal Australian individuals could not be replicated. In support of the known polygenic architecture for RHD, overtransmission of a polygenic risk score from unaffected parents to affected probands was observed (polygenic transmission disequilibrium testing mean [SE], 0.27 [0.16] SDs; P = .04996), and the chip-based heritability was estimated to be high at 0.49 (SE = 0.12; P = 3.28 × 10-5) in Black African individuals. Conclusions and Relevance: This study revealed a novel candidate susceptibility locus exclusive to Black African individuals and an important heritable component to RHD susceptibility in African individuals.


Assuntos
População Negra/genética , Predisposição Genética para Doença/etnologia , Estudo de Associação Genômica Ampla/métodos , Nível de Saúde , Cardiopatia Reumática/etnologia , Adolescente , Adulto , África/epidemiologia , Criança , Progressão da Doença , Ecocardiografia , Feminino , Seguimentos , Genótipo , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Estudos Retrospectivos , Cardiopatia Reumática/diagnóstico , Cardiopatia Reumática/genética , Adulto Jovem
7.
Commun Biol ; 4(1): 9, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398072

RESUMO

The mitogen-activated protein kinase (MAPK) pathways are crucial regulators of the cellular processes that fuel the malignant transformation of normal cells. The molecular aberrations which lead to cancer involve mutations in, and transcription variations of, various MAPK pathway genes. Here, we examine the genome sequences of 40,848 patient-derived tumours representing 101 distinct human cancers to identify cancer-associated mutations in MAPK signalling pathway genes. We show that patients with tumours that have mutations within genes of the ERK-1/2 pathway, the p38 pathways, or multiple MAPK pathway modules, tend to have worse disease outcomes than patients with tumours that have no mutations within the MAPK pathways genes. Furthermore, by integrating information extracted from various large-scale molecular datasets, we expose the relationship between the fitness of cancer cells after CRISPR mediated gene knockout of MAPK pathway genes, and their dose-responses to MAPK pathway inhibitors. Besides providing new insights into MAPK pathways, we unearth vulnerabilities in specific pathway genes that are reflected in the re sponses of cancer cells to MAPK targeting drugs: a revelation with great potential for guiding the development of innovative therapies.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Mutação , Neoplasias/metabolismo , Células A549 , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Sobrevivência Celular , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Difenilamina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Neoplasias/genética , Transcrição Gênica/efeitos dos fármacos
8.
Sci Rep ; 10(1): 1212, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988390

RESUMO

Given that the biological processes governing the oncogenesis of pancreatic cancers could present useful therapeutic targets, there is a pressing need to molecularly distinguish between different clinically relevant pancreatic cancer subtypes. To address this challenge, we used targeted proteomics and other molecular data compiled by The Cancer Genome Atlas to reveal that pancreatic tumours can be broadly segregated into two distinct subtypes. Besides being associated with substantially different clinical outcomes, tumours belonging to each of these subtypes also display notable differences in diverse signalling pathways and biological processes. At the proteome level, we show that tumours belonging to the less severe subtype are characterised by aberrant mTOR signalling, whereas those belonging to the more severe subtype are characterised by disruptions in SMAD and cell cycle-related processes. We use machine learning algorithms to define sets of proteins, mRNAs, miRNAs and DNA methylation patterns that could serve as biomarkers to accurately differentiate between the two pancreatic cancer subtypes. Lastly, we confirm the biological relevance of the identified biomarkers by showing that these can be used together with pattern-recognition algorithms to accurately infer the drug sensitivity of pancreatic cancer cell lines. Our study shows that integrative profiling of multiple data types enables a biological and clinical representation of pancreatic cancer that is comprehensive enough to provide a foundation for future therapeutic strategies.


Assuntos
Aprendizado de Máquina , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Metilação de DNA/genética , Humanos , MicroRNAs/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Proteoma , RNA Mensageiro/genética , RNA-Seq , Transcrição Gênica , Transcriptoma , Sequenciamento do Exoma
9.
Commun Biol ; 2: 414, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754644

RESUMO

Malignant cells reconfigure their metabolism to support oncogenic processes such as accelerated growth and proliferation. The mechanisms by which this occurs likely involve alterations to genes that encode metabolic enzymes. Here, using genomics data for 10,528 tumours of 32 different cancer types, we characterise the alterations of genes involved in various metabolic pathways. We find that mutations and copy number variations of metabolic genes are pervasive across all human cancers. Based on the frequencies of metabolic gene alterations, we further find that there are two distinct cancer supertypes that tend to be associated with different clinical outcomes. By utilising the known dose-response profiles of 825 cancer cell lines, we infer that cancers belonging to these supertypes are likely to respond differently to various anticancer drugs. Collectively our analyses define the foundational metabolic features of different cancer supertypes and subtypes upon which discriminatory strategies for treating particular tumours could be constructed.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Metabolismo Energético/genética , Variação Genética , Neoplasias/genética , Neoplasias/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Prognóstico , Transcriptoma
10.
Brainlesion ; 11383: 239-250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482151

RESUMO

Glioblastoma is the most aggressive malignant primary brain tumor with a poor prognosis. Glioblastoma heterogeneous neuroimaging, pathologic, and molecular features provide opportunities for subclassification, prognostication, and the development of targeted therapies. Magnetic resonance imaging has the capability of quantifying specific phenotypic imaging features of these tumors. Additional insight into disease mechanism can be gained by exploring genetics foundations. Here, we use the gene expressions to evaluate the associations with various quantitative imaging phenomic features extracted from magnetic resonance imaging. We highlight a novel correlation by carrying out multi-stage genomewide association tests at the gene-level through a non-parametric correlation framework that allows testing multiple hypotheses about the integrated relationship of imaging phenotype-genotype more efficiently and less expensive computationally. Our result showed several novel genes previously associated with glioblastoma and other types of cancers, as the LRRC46 (chromosome 17), EPGN (chromosome 4) and TUBA1C (chromosome 12), all associated with our radiographic tumor features.

11.
Oncotarget ; 9(49): 29123-29139, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30018740

RESUMO

Despite modern therapeutic advances, the survival prospects of pancreatic cancer patients have remained poor. Besides being highly metastatic, pancreatic cancer is challenging to treat because it is caused by a heterogeneous array of somatic mutations that impact a variety of signaling pathways and cellular regulatory systems. Here we use publicly available transcriptomic, copy number alteration and mutation profiling datasets from pancreatic cancer patients together with data on disease outcomes to show that the three major pancreatic cancer subtypes each display distinctive aberrations in cell signaling and metabolic pathways. Importantly, patients afflicted with these different pancreatic cancer subtypes also exhibit distinctive survival profiles. Within these patients, we find that dysregulation of the phosphoinositide 3-kinase and mitogen-activated protein kinase pathways, and p53 mediated disruptions of cell cycle processes are apparently drivers of disease. Further, we identify for the first time the molecular perturbations of signalling networks that are likely the primary causes of oncogenesis in each of the three pancreatic cancer subtypes.

12.
Sci Rep ; 8(1): 5078, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29567959

RESUMO

There are limited data on meconium and faecal bacterial profiles from African infants and their mothers. We characterized faecal bacterial communities of infants and mothers participating in a South African birth cohort. Stool and meconium specimens were collected from 90 mothers and 107 infants at birth, and from a subset of 72 and 36 infants at 4-12 and 20-28 weeks of age, respectively. HIV-unexposed infants were primarily exclusively breastfed at 4-12 (49%, 26/53) and 20-28 weeks (62%, 16/26). In contrast, HIV-exposed infants were primarily exclusively formula fed at 4-12 (53%; 10/19) and 20-28 weeks (70%, 7/10). Analysis (of the bacterial 16S rRNA gene sequences of the V4 hypervariable region) of the 90 mother-infant pairs showed that meconium bacterial profiles [dominated by Proteobacteria (89%)] were distinct from those of maternal faeces [dominated by Firmicutes (66%) and Actinobacteria (15%)]. Actinobacteria predominated at 4-12 (65%) and 20-28 (50%) weeks. HIV-exposed infants had significantly higher faecal bacterial diversities at both 4-12 (p = 0.026) and 20-28 weeks (p = 0.002). HIV-exposed infants had lower proportions of Bifidobacterium (p = 0.010) at 4-12 weeks. Maternal faecal bacterial profiles were influenced by HIV status, feeding practices and mode of delivery. Further longitudinal studies are required to better understand how these variables influence infant and maternal faecal bacterial composition.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal/genética , Infecções por HIV/microbiologia , Mecônio/microbiologia , Adulto , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Aleitamento Materno , Fezes/virologia , Comportamento Alimentar , Feminino , Firmicutes/genética , Firmicutes/isolamento & purificação , HIV/genética , HIV/patogenicidade , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Lactente , Fórmulas Infantis/microbiologia , Recém-Nascido , Mecônio/virologia , Mães , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , África do Sul/epidemiologia
13.
Brief Funct Genomics ; 17(1): 34-41, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968683

RESUMO

Drug repositioning is the process of finding new therapeutic uses for existing, approved drugs-a process thathas value when considering the exorbitant costs of novel drug development. Several computational strategies exist as a way to predict these alternative applications. In this study, we used datasets on: (1) human biological drug targets and (2) disease-associated genes and, based on a direct functional interaction between them, searched for potential opportunities for drug repositioning. From the set of 1125 unique drug targets and their 88 490 interactions with disease-associated genes, 30 drug targets were analyzed and (3) discussed in detail for the purpose of this article. The current indications of the drugs thattarget them were validated through the interactions, and new opportunities for repositioning were predicted. Among the set of drugs for potential repositioning werebenzodiazepines for the treatment of autism spectrum disorders; nortriptyline for the treatment of melanoma, glioma and other cancers; and vitamin B6 in prevention of spontaneous abortions and cleft palate birth defects. Special emphasis was also placed on those new potential indications that pertained to orphan diseases-these are diseases whose rarity means that development of novel treatment is not financially viable. This computational drug repositioning approach uses existing information on drugs and drug targets, and insights into the genetic basis of disease, as a means to systematically generate the most probable new uses for the drugs on offer, and in this way harness their true therapeutic power.


Assuntos
Doença , Reposicionamento de Medicamentos , Biologia de Sistemas/métodos , Biologia Computacional , Descoberta de Drogas , Genética Populacional , Humanos , Proteínas/metabolismo
14.
Bioinformatics ; 32(4): 549-56, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26508762

RESUMO

MOTIVATION: Despite numerous successful Genome-wide Association Studies (GWAS), detecting variants that have low disease risk still poses a challenge. GWAS may miss disease genes with weak genetic effects or strong epistatic effects due to the single-marker testing approach commonly used. GWAS may thus generate false negative or inconclusive results, suggesting the need for novel methods to combine effects of single nucleotide polymorphisms within a gene to increase the likelihood of fully characterizing the susceptibility gene. RESULTS: We developed ancGWAS, an algebraic graph-based centrality measure that accounts for linkage disequilibrium in identifying significant disease sub-networks by integrating the association signal from GWAS data sets into the human protein-protein interaction (PPI) network. We validated ancGWAS using an association study result from a breast cancer data set and the simulation of interactive disease loci in the simulation of a complex admixed population, as well as pathway-based GWAS simulation. This new approach holds promise for deconvoluting the interactions between genes underlying the pathogenesis of complex diseases. Results obtained yield a novel central breast cancer sub-network of the human interactome implicated in the proteoglycan syndecan-mediated signaling events pathway which is known to play a major role in mesenchymal tumor cell proliferation, thus providing further insights into breast cancer pathogenesis. AVAILABILITY AND IMPLEMENTATION: The ancGWAS package and documents are available at http://www.cbio.uct.ac.za/~emile/software.html.


Assuntos
Neoplasias da Mama/patologia , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais , Software , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Feminino , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação
15.
PLoS One ; 8(7): e67472, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844013

RESUMO

The outcome of infection by Mycobacterium tuberculosis (Mtb) depends greatly on how the host responds to the bacteria and how the bacteria manipulates the host, which is facilitated by protein-protein interactions. Thus, to understand this process, there is a need for elucidating protein interactions between human and Mtb, which may enable us to characterize specific molecular mechanisms allowing the bacteria to persist and survive under different environmental conditions. In this work, we used the interologs method based on experimentally verified intra-species and inter-species interactions to predict human-Mtb functional interactions. These interactions were further filtered using known human-Mtb interactions and genes that are differentially expressed during infection, producing 190 interactions. Further analysis of the subcellular location of proteins involved in these human-Mtb interactions confirms feasibility of these interactions. We also conducted functional analysis of human and Mtb proteins involved in these interactions, checking whether these proteins play a role in infection and/or disease, and enriching Mtb proteins in a previously predicted list of drug targets. We found that the biological processes of the human interacting proteins suggested their involvement in apoptosis and production of nitric oxide, whereas those of the Mtb interacting proteins were relevant to the intracellular environment of Mtb in the host. Mapping these proteins onto KEGG pathways highlighted proteins belonging to the tuberculosis pathway and also suggested that Mtb proteins might use the host to acquire nutrients, which is in agreement with the intracellular lifestyle of Mtb. This indicates that these interactions can shed light on the interplay between Mtb and its human host and thus, contribute to the process of designing novel drugs with new biological mechanisms of action.


Assuntos
Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas/genética , Mycobacterium tuberculosis/metabolismo , Mapeamento de Interação de Proteínas , Tuberculose Pulmonar/metabolismo , Apoptose , Proteínas de Bactérias , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Anotação de Sequência Molecular , Mycobacterium tuberculosis/genética , Óxido Nítrico/biossíntese , Mapas de Interação de Proteínas , Tuberculose Pulmonar/microbiologia
16.
Bioinformatics ; 27(13): i366-73, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21685094

RESUMO

MOTIVATION: Current gene set enrichment approaches do not take interactions and associations between set members into account. Mutual activation and inhibition causing positive and negative correlation among set members are thus neglected. As a consequence, inconsistent regulations and contextless expression changes are reported and, thus, the biological interpretation of the result is impeded. RESULTS: We analyzed established gene set enrichment methods and their result sets in a large-scale investigation of 1000 expression datasets. The reported statistically significant gene sets exhibit only average consistency between the observed patterns of differential expression and known regulatory interactions. We present Gene Graph Enrichment Analysis (GGEA) to detect consistently and coherently enriched gene sets, based on prior knowledge derived from directed gene regulatory networks. Firstly, GGEA improves the concordance of pairwise regulation with individual expression changes in respective pairs of regulating and regulated genes, compared with set enrichment methods. Secondly, GGEA yields result sets where a large fraction of relevant expression changes can be explained by nearby regulators, such as transcription factors, again improving on set-based methods. Thirdly, we demonstrate in additional case studies that GGEA can be applied to human regulatory pathways, where it sensitively detects very specific regulation processes, which are altered in tumors of the central nervous system. GGEA significantly increases the detection of gene sets where measured positively or negatively correlated expression patterns coincide with directed inducing or repressing relationships, thus facilitating further interpretation of gene expression data. AVAILABILITY: The method and accompanying visualization capabilities have been bundled into an R package and tied to a grahical user interface, the Galaxy workflow environment, that is running as a web server. CONTACT: Ludwig.Geistlinger@bio.ifi.lmu.de; Ralf.Zimmer@bio.ifi.lmu.de.


Assuntos
Perfilação da Expressão Gênica , Neoplasias de Tecido Nervoso/genética , Neoplasias de Tecido Nervoso/metabolismo , Software , Algoritmos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA